

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMMERCE, HUMAN SCIENCES AND EDUCATION

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION	ION: BACHELOR OF ECONOMICS HONOURS DEGREE			
QUALIFICATION 08HECO	CODE:	LEVEL:	8	
COURSE CODE: AEM810S		COURSE	NAME: APPLIED ECONOMETRICS	
SESSION:		PAPER:	THEORY	
DURATION:	3 HOURS	MARKS:	100	

FIRST OPPORTUNITY QUESTION PAPER			
EXAMINER(S)	Prof. Tafirenyika Sunde		
MODERATOR:	Dr. Reinhold Kamati		

INSTRUCTIONS		
1. Answer ALL the questions.		
2. Write clearly and neatly.		
3. Number the answers clearly.		

PERMISSIBLE MATERIALS

- 1. Ruler
- 2. Calculator

THIS QUESTION PAPER CONSISTS OF 4 PAGES

QUESTION 1 [25 MARKS]

- a) What is the difference between time-series and cross-sectional data? [5]
- b) Explain the purpose of the following diagnostic tests, and also state their hypotheses and decision rules

i.	Normality	[3]
ii.	Autocorrelation	[3]
iii.	Heteroscedasticity	[3]
iv.	Ramsey RESET	[3]
v.	CUSUM	[3]

c) Given the following unrestricted OLS regression equation

$$Y_t = B_0 + B_1 X_{1t} + B_2 X_{2t} + B_3 X_{3t} + B_4 X_{4t} + B_5 X_{5t} + e_t$$

- i. State the hypothesis and decision rule used to test whether X₂, X₃ and X₄ are redundant variables.
 [4]
- ii. If the variables in question c) i. are redundant, how would the adjusted coefficient of determination be affected? [1]

QUESTION 2 [25 MARKS]

- a) What properties of time series data would make Ordinary Least Squares (OLS) results spurious? [2]
- b) State the four characteristics of the spurious OLS regression equation. [4]
- c) Why should one conduct the unit-roots tests? [4]
- d) State the Augmented Dickey-Fuller (ADF) and Phillips Peron equations used to test for unit roots. [10]
- e) Fully interpret the unit root test results for the Exports (EXP) variable in Tables 1-4 below. [5]

Table 1

Null Hypothesis: EXP h	as a unit root		
Exogenous: Constant			
Lag Length: 1 (Automat	ic - based on SIC, maxlag=	=7)	
		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.277610	0.6261
Test critical values:	1% level	-3.679322	
	5% level	-2.967767	
	10% level	-2.622989	
*MacKinnon (1996) one		2.022707	

Table 2

Null Hypothesis: EXP h	as a unit root		
Exogenous: Constant, L	inear Trend		
Lag Length: 1 (Automat	tic - based on SIC, maxlag	=7)	
		t-Statistic	Prob.*
Augmented Dickey-Full	ler test statistic	-1.271960	0.8750
Test critical values:	1% level	-4.309824	

5% level	-3.574244	
10% level	-3.221728	
MacKinnon (1996) one-sided p-values.		

Table 3

Null Hypothesis: D(EXP)	has a unit root		
Exogenous: Constant			
Lag Length: 2 (Automation	c – based on SIC, maxlag=7))	
		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.903703	0.0062
Test critical values:	1% level	-3.699871	
	5% level	-2.976263	
	10% level	-2.627420	
*MacKinnon (1996) one-	sided p-values.		

Table 4

Null Hypothesis: D(EXP)	has a unit root		
Exogenous: Constant, Lir	near Trend		
Lag Length: 2 (Automation	c – based on SIC, maxlag=7))	
		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic -4.340872			0.0100
Test critical values:	1% level	-4.339330	
	5% level	-3.587527	
	10% level	-3.229230	
*MacKinnon (1996) one-	sided p-values.		

QUESTION 3 [25 MARKS]

- a) Under what circumstances do you use the ARDL econometrics method?
- b) Given Gross Domestic Product (GDP), Capital (K) and Labour (L) variables, where GDP is the dependent variable, and K and L are independent variables, answer the following questions:
 - i. Write the ARDL equation for the three variables. [3]
 - ii. How do you test for cointegration using the equation in b) i. above? State the hypothesis and decision rule. [2]
 - iii. If cointegration is confirmed state, the ARDL-ECM for these three variables.

[8]

iv. Write down the short-run and long-run parameters in the ARDL-ECM equation.

[2]

v. Interpret the ARDL-ECM results in Table 5 below.

[5]

Table 5

ARDL Error Correction Regression Dependent Variable: D(LNGDP) Selected Model: ARDL(3, 2, 1)

Case 2: Restricted Constant and No Trend

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LNGDP(-1))	0.272387	0.041986	6.487582	0.0000
D(LNGDP(-2))	0.111162	0.019216	5.784960	0.0000
D(LNPCE)	0.418140	0.026011	16.07579	0.0000
D(LNPCE(-1))	0.455314	0.061821	7.364981	0.0000
D(LNPDI)	0.136933	0.005837	23.45855	0.0000
ECT(-1)	-0.868385	0.060270	-14.40829	0.0000
R-squared	0.992970	Mean dependent var		0.029535
Adjusted R-squared	0.991297	S.D. dependent var		0.021068
S.E. of regression	0.001965	Akaike info criterion		-9.433025
Sum squared residual	8.11E-05	Schwarz criter	ion	-9.145061
Log likelihood	133.3458	Hannan-Quinn	criterion.	-9.347398
Durbin-Watson stat	1.712794			

QUESTION 4 [25 MARKS]

(a) Suppose you want to test for the Dynamic Granger causality between GDP (Y) and money supply (M), whose model is given as follows:

$$\Delta Y_{t} = \lambda_{0} + \sum_{i=1}^{n} \lambda_{1i} \Delta Y_{t-i} + \sum_{i=1}^{n} \lambda_{2i} \Delta M_{t-1} + \lambda_{3} \epsilon_{1t-1} + \mu_{1t}$$

$$\Delta M_{t} = \varphi_{0} + \sum_{i=1}^{n} \varphi_{1i} \Delta Y_{t-i} + \sum_{i=1}^{n} \varphi_{2i} \Delta M_{t-1} + \varphi_{3} \epsilon_{2t-1} + \mu_{2t}$$
(2)

$$\Delta M_t = \varphi_0 + \sum_{i=1}^{n} \varphi_{1i} \Delta Y_{t-i} + \sum_{i=1}^{n} \varphi_{2i} \Delta M_{t-1} + \varphi_3 \epsilon_{2t-1} + \mu_{2t}$$
 (2)

i. What name is given to this model? [5]

ii. Using the appropriate hypothesis, succinctly explain the four conditions of causality for equations (1) and (2). [12]

iii. Assume that the results in the table below are obtained from estimating the equations [1] and [2]. Interpret these Granger results fully. [8]

Dependent	Independe F-value	LR causality t-value		
variables	ΔLNY ΔLNM		(prob)	
ΔLNY	$\beta_{11} = \beta_{12} = \beta_{13} = 0$ (0.08234)	$\beta_{21} = \beta_{22} = \beta_{23} = 0$ (0.34201)	-2.8443 (0.0000)	
ΔLNM	$\varphi_{11} = \varphi_{12} = \varphi_{13} = 0$ (0.03534)	$\varphi_{21} = \varphi_{22} = \varphi_{23} = 0$ (0.00156)	-3.4567 (0.0000)	

Note: *, ** and *** denote statistical significance at 10%, 5%, and 1% levels, respectively